Journal of Organometallic Chemistry, 316 (1986) 291-300 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

KATIONISCHE KOMPLEXE MIT DER BIS(PENTAMETHYLCYCLOPENTADIENYL)TITAN(IV)-BAUGRUPPE: DARSTELLUNG UND STRUKTUR DER DIMETHYLFORMAMIDLIGANDEN ENTHALTENDEN KOMPLEXE [Cp*₂Ti(DMF)Cl]CF₃SO₃ UND [Cp*₂Ti(DMF)₂](CF₃SO₃)₂

BRIGITTE HONOLD und ULF THEWALT*

Sektion für Röntgen- und Elektronenbeugung der Universität Ulm, Oberer Eselsberg, D-7900 Ulm (B.R.D.) (Eingegangen den 19. Juni 1986)

Summary

Reaction of $Cp_2^*TiCl_2$ with AgCF₃SO₃, in dimethylformamide (DMF) gives the ionic compounds $[Cp_2^*Ti(DMF)Cl]CF_3SO_3$ (**A**) and $[Cp_2^*Ti(DMF)_2](CF_3SO_3)_2$ (**B**). The structure of the products was determined by X-ray diffraction. The Ti atoms in both compounds have the usual, approximately tetrahedral coordination geometry typical for $Cp_2^*Ti^{IV}$ compounds. Crystal data for **A** (at 20°C): triclinic, $P\overline{1}$, a 14.944(2), b 11.616(2), c 8.820(1) Å, α 100.18(1), β 107.31(1), γ 101.78(2)°, Z = 2, and for **B** (at $-100^{\circ}C$): monoclinic, $P2_1/c$, a 19.100(5), b 14.471(5), c 12.788(4) Å, β 98.84(3)°, Z = 4.

Zusammenfassung

Bei der Umsetzung von $Cp_2^*TiCl_2$ mit Ag CF_3SO_3 in Dimethylformamid (DMF) entstehen die ionischen Komplexe $[Cp_2^*Ti(DMF)Cl]CF_3SO_3$ (A) und $[Cp_2^*-Ti(DMF)_2](CF_3SO_3)_2$ (B). Röntgenstrukturbestimmungen ergeben, dass die Ti-Atome in A und B die für $Cp_2^*Ti^{IV}$ -Verbindungen übliche annähernd tetraedrische Koordinationsgeometrie aufweisen. Kristalldaten für A (bei 20°C): triklin, $P\overline{1}$, *a* 14.944(2), *b* 11.616(2), *c* 8.820(1) Å, α 100.18(1), β 107.31(1), γ 101.78(2)°, Z = 2, und für B (bei -100°C): monoklin, $P2_1/c$, *a* 19.100(5), *b* 14.471(5), *c* 12.788(4) Å, β 98.84(3)°, Z = 4.

Einführung

Ein bequemer Weg zur Darstellung ionisch gebauter Komplexe des Typs $[Cp_2Ti(D)_2]X_2^*$ besteht in der Umsetzung von $Cp_2Ti(SO_3CF_3)_2$ [1] mit dem potentiellen Neutralliganden D. Die am Ti nur locker gebundenen Trifluormethan-

0022-328X/86/\$03.50 © 1986 Elsevier Sequoia S.A.

^{*} Benutzte Abkürzungen: $Cp = \eta^5 - C_5H_5$, $Cp^* = \eta^5 - (CH_3)_5C_5$, DMF = Dimethylformamid, $dpy = \alpha$, α' -Dipyridyl, THF – Tetrahydrofuran.

sulfonatgruppen werden dabei aus der inneren in die äussere Koordinationssphäre gedrängt. So haben wir beispielsweise $[Cp_2Ti(dpy)](SO_3CF_3)_2$ dargestellt [2]. Uns interessierte die Frage, ob analoge Verdrängungsreaktionen auch bei den Komplexen mit permethylierten Cyclopentadienylliganden ablaufen. Die vergleichsweise hohe Raumbeanspruchung der C₅Me₅-Liganden und ihre gegenüber C₅H₅ erhöhte Fähigkeit, Elektronendichte dem Ti-Zentrum zur Verfügung zu stellen, sorgen häufig dafür, dass die Verbindungen mit (Me₅C₅)₂M-Gruppen deutlich andere Eigenschaften aufweisen als ihre (C₅H₅)₃M-Analoga [3].

Im folgenden berichten wir über die beiden Verbindungen $[Cp^{*}_{2}Ti(DMF)Cl]CF_{3}$ -SO₃ (**A**) und $Cp^{*}_{2}Ti(DMF)_{2}](CF_{3}SO_{3})_{2}$ (**B**).

Experimentelles und Strukturbestimmung

Eine Suspension von 0.39 g $Cp_{3}^{\star}TiCl_{2}$ (1 mmol) in 40 ml DMF (wasserfrei) wurde mit einer Lösung von 0.51 g AgCF₃SO₃ (2 mmol) in 15 ml DMF (wasserfrei) versetzt. Nach 20 h intensiven Rührens wurde vom ausgefallenen AgCl abfiltriert. Die violette Lösung wurde bis zur Trockene eingeengt. Die Trennung der beiden Produkte erfolgte über ihre unterschiedliche Löslichkeit in wasserfreiem THF: Während sich A in THF mit roter Farbe löst, bleibt B als violetter Feststoff zurück. Aus der filtrierten roten THF-Lösung (ca. 40 ml) kristallisierte A nach dem Überschichten mit ca. 20 ml wasserfreien Pentans in Form weniger roter, durchsichtiger Nadeln aus. Der B enthaltende violette Rückstand wurde in 10 ml wasserfreiem CH₂Cl₂ aufgenommen. Aus der filtrierten, mit 10 ml Pentan überschichteten Lösung kristallisierte B innerhalb eines Tages in Form violetter, harter Kristall aus. (Geschätzte) Ausbeuten: 2% für A und 28% für B. Die verfügbare Menge an A, C₂₄ClH₃₇F₃NO₄STi. reichte nicht aus, um eine Elementaranalyse durchzuführen. B: Gef.: C, 42.8; H, 5.7: N, 2.9. C₂₈H₄₄F₆N₂O₈S₂Ti (762.65) ber.: C, 44.10; H, 5.81; N, 3.67%.

IR-Spektren (KBr-Presslinge, Bandenangaben in cm⁻¹). A: 2990w, 2980w, 2900w, 1650s, 1495m, 1430m, 1398m, 1255s, 1242sh, 1155s, 1030s, 755w, 695w, 640s, 580w, 520w. B: 2995w, 2950w, 2910w, 1650s, 1490m, 1430m, 1380m, 1365m, 1270s, 1255sh, 1150s, 1050m, 1030s, 755w, 695w, 655m, 640s, 580w, 525w.

¹H-NMR-Spektren (in CDCl₃; δ in ppm gegen TMS).

A: 1.97, 3.10, 3.35.

B: 2.00, 2.91, 3.00.

Röntgenkristallographie von A

Messanlage und Strahlung wie bei B. Die Röntgenmessungen erfolgten bei 20°C, wobei das Kristallfragment (0.2, 0.3, 0.4 mm) in einer Lindemann-Glaskapillare

eingeschlossen war. Kristalldaten: triklin, Raumgruppe $P\overline{1}$; Gitterkonstanten: a 14.944(2), b 11.616(2), c 8.820(1) Å, $\alpha 100.18(1)$, $\beta 107.31(1)$, $\gamma 101.78(2)^{\circ}$, berechnete Dichte für Z = 2: 1.382 g cm⁻³. Intensitätsdaten: $\theta/2\theta$ -Betrieb; Messbereich $4^{\circ} \leq 2\theta \leq 50^{\circ}$; Lp-Korrektur, keine Absorptionskorrektur (μ 4.8 cm⁻¹); 2752 unabhängige Reflexe; die 2740 Reflexe mit $I_0 \geq 1\sigma(I_0)$ wurden für die weiteren Rechnungen benutzt. Die Lokalisierung der schwereren Atome Ti, Cl, S erfolgte mit Hilfe direkter Methoden. Die übrigen Nichtwasserstoffatome liessen sich in ΔF -Synthesen lokalisieren. Verfeinerung mit anisotropen Temperaturfaktoren. H-Atome nicht berücksichtigt. Abschliessende R-Werte: R = 0.080, $R_w(F) = 0.087$. Max.

TABELLE 1

ATOMPARAMETER	VON [Cp [*] ₂ Ti(DMF)Cl]CF ₃ SO ₃ (A	A)
---------------	--	----

Atom	x	у	Ζ	U _{eq}
Komplexkation				
Ti	0.7525(1)	0.2953(1)	0.5953(2)	0.029(1)
Cl	0.8104(2)	0.3602(2)	0.8835(2)	0.056(1)
O(11)	0.8272(4)	0.1722(5)	0.5981(7)	0.045(3)
C(111)	0.8584(6)	0.0787(8)	0.5720(13)	0.056(5)
N(11)	0.9061(5)	0.0405(6)	0.6935(12)	0.063(5)
C(112)	0.9347(9)	-0.0739(10)	0.6519(22)	0.123(11)
C(113)	0.9288(10)	0.1018(13)	0.8692(16)	0.100(9)
C(11)	0.8441(6)	0.3554(7)	0.4279(9)	0.041(4)
C(12)	0.7657(6)	0.4104(7)	0.3946(9)	0.037(4)
C(13)	0.7773(6)	0.4952(7)	0.5423(10)	0.043(4)
C(14)	0.8664(6)	0.4995(7)	0.6603(10)	0.043(4)
C(15)	0.9060(5)	0.4121(7)	0.5933(10)	0.040(4)
C(11')	0.8623(7)	0.2674(8)	0.3014(12)	0.058(5)
C(12')	0.6996(7)	0.4067(9)	0.2238(11)	0.059(5)
C(13')	0.7199(7)	0.5877(8)	0.5646(13)	0.062(6)
C(14')	0.9167(7)	0.5923(8)	0.8240(11)	0.054(5)
C(15')	1.0032(6)	0.3872(9)	0.6735(13)	0.063(6)
C(21)	0.5791(5)	0.2642(7)	0.4620(10)	0.042(4)
C(22)	0.6046(5)	0.1622(7)	0.3916(9)	0.041(4)
C(23)	0.6295(5)	0.0967(7)	0.5106(11)	0.047(4)
C(24)	0.6267(6)	0.1636(8)	0.6590(10)	0.044(4)
C(25)	0.5964(5)	0.2667(8)	0.6280(10)	0.045(4)
C(21')	0.5168(7)	0.3372(10)	0.3690(13)	0.066(6)
C(22')	0.5864(7)	0.1138(9)	0.2076(11)	0.063(5)
C(23')	0.6464(7)	-0.0280(8)	0.4822(17)	0.081(7)
C(24')	0.6409(8)	0.1189(11)	0.8132(14)	0.077(6)
C(25')	0.5706(7)	0.3566(10)	0.7466(12)	0.072(6)
Trifluoromethan.	sulfonat-Anion			
s	0.7590(3)	0.8664(3)	0.0549(4)	0.092(2)
O(1)	0.6452(15)	0.8643(26)	0.0197(26)	0.379(25)
O(2)	0.7817(13)	0.8401(10)	-0.0766(16)	0.206(14)
O(3)	0.8069(11)	0.9551(11)	0.1858(15)	0.188(10)
C(1)	0.7182(17)	0.7288(13)	0.1007(21)	0.142(14)
F(1)	0.7020(9)	0.7368(10)	0.2374(14)	0.172(10)
F(2)	0.6696(10)	0.6428(8)	-0.0074(14)	0.192(10)
F(3)	0.8162(17)	0.7110(28)	0.1469(31)	0.400(30)

TABELLE 2

ATOMPARAMETER VON $[Cp_2^{\star}Ti(DMF)_2](CF_3SO_3)_2$ (B)

Atom	.Х	Ľ	47 	U_{ca}
Komplexkation	??			11
Ti	0.2279(1)	0.4637(1)	0.2598(1)	0.018(1)
oan	0.1559(2)	0.5406(3)	0.3172(3)	0.027(2)
N(11)	0.0872(2)	0.6335(3)	0.3974(4)	0.025(2)
Callb	0.0960(3)	0.5659(4)	0.3351(5)	0.031(3)
C(112)	0.1466(3)	0.6841(5)	0.4578(6)	0.043(4)
C(113)	0.0160(3)	0.6651(5)	0.4121(7)	0.050(4)
O(22)	0.3051(2)	0.5446(3)	0.3346(3)	0.028(2)
N(22)	0.3930(2)	0.6436(3)	0.3939(4)	0.027(2)
C(221)	0.3706(3)	0.5661(4)	0.3503(4)	0.024(3)
C(222)	0.3471(3)	0.7124(5)	0.4313(6)	0.043(4)
C(223)	0.4699(3)	0,6641(5)	0.4122(6)	().()44(4)
càn	0.2293(3)	0.3911(4)	0.4284(5)	0.027(3)
C(12)	0.2926(3)	0.3628(4)	0.3942(5)	0.025(3)
C(13)	0.2755(3)	0.3107(4)	0.3010(4)	0.026(3)
C(14)	0.2008(3)	0.3022(4)	0.2785(6)	0.034(3)
C(15)	0.1721(3)	0.3523(4)	0.3585(6)	0.039(4)
C(11').	0.2250(5)	0.4492(5)	0.5252(6)	0.052(5)
C(12')	0.3648(3)	0.3762(5)	().4549(5)	0.040(4)
C(13')	0.3302(4)	0.2536(5)	0.2531(6)	0.048(4)
C(14')	0.1582(4)	0,2344(5)	0.2057(8)	0.070(5)
C(15')	0.0944(4)	0.3537(5)	0.3676(8)	0.064(5)
C(21)	0.1627(3)	0.5422(4)	0.1064(4)	0.023(3)
C(22)	0.2312(3)	0.5821(4)	0.1289(4)	0.026(3)
C(23)	0.2807(3)	0.5120(5)	0.1101(5)	0.032(3)
C(24)	0.2420(4)	0.4306(5)	0.0789(5)	0.038(4)
C(25)	0.1688(3)	0.4486(4)	0.0780(4)	0.029(3)
C(21')	0.0939(3)	0.5932(5)	0.0988(5)	0.034(3)
C(22')	0.2482(4)	0.6789(4)	0.1565(6)	0.039(3)
C(23')	0.3592(4)	0.5268(7)	0.1110(6)	0.066(6)
C(24')	0.2727(6)	0.3507(6)	0.0267(6)	0.076(6)
C(25')	0.1056(5)	0.3926(5)	0.0283(7)	0.062(5)
Trifluoromethe	ansulfonat-Anionen			
S(1)	0.0896(1)	0.9083(1)	0.2382(1)	0.032(1)
O(1)	0.0527(3)	0.9443(4)	0.3187(4)	0.059(1)
O(2)	0.0877(3)	0.8096(3)	0.2287(4)	0.049(3)
O(3)	0.0788(3)	0.9586(4)	0.1398(4)	0.053(3)
COL	0.1824(3)	0.9314(4)	0.2876(5)	0.032(3)
F(1)	0.2044(2)	0.8887(3)	0.3790(3)	0.052(2)
F(2)	0.1955(2)	1.0202(3)	0.3043(4)	0.062(3)
F(3)	0.2238(2)	0.9029(3)	0.2191(3)	0.051(2)
S(2)	0.5536(1)	0.4004(1)	0.2916(1)	0.041(1)
O(4)	0.4808(3)	0.3927(6)	0.2748(8)	0.110(6)
O(5)	0.5919(3)	0.3191(4)	0.2820(5)	0.069(4)
Q(6)	0.5829(7)	0.4514(6)	0.3829(5)	0.139(9)
C(2)	0.5725(4)	0.4756(7)	0.1879(8)	0.067(6)
F(4)	0.5399(3)	0.5550(4)	0.1843(6)	0.091(4)
F(5)	0.5441(4)	0.4374(6)	0.0917(5)	0.116(6)
F(6)	0.6366(3)	0.4868(6)	0.1786(7)	0.146(7)

Restelektronendichte 0.79 $e^{A^{-3}}$. Formfaktoren für Neutralatome wie bei **B**; benutzte Programmsysteme: MULTAN 84 [4] und SHELX-System [5]; Atomparameter siehe Tabelle 1 [6].

Röntgenkristallographie von B

Die Röntgenmessungen erfolgten bei -100°C auf einem Philips-PW1100-Vierkreisdiffraktometer (Graphitmonochromator, Mo- K_{a} -Strahlung (λ 0.71069 Å)). Der Kristall (0.3, 0.3, 0.4 mm) war sicherheitshalber zum Schutz gegen Feuchtigkeit in einem Lindemann-Glasröhrchen eingeschlossen. Kristalldaten: monoklin. Raumgruppe P_{2_1}/c ; Gitterkonstanten: a 19.100(5), b 14.471(5), c 12.788(4) Å, β 98.84(3)°; berechnete Dichte für Z = 4: 1.450 g cm⁻³; gemessene Dichte (CCl₄/n-Hexan, Schwebemethode): 1.42 g cm⁻³. Intensitätsdaten: $\theta/2\theta$ -Betrieb; Messbereich 4° $\leq 2\theta \leq 50^{\circ}$; Lp-Korrektur, keine Absorptionskorrektur (μ 3.9 cm⁻¹); 6104 unabhängige Reflexe; die nachfolgenden Rechnungen basieren auf den 4775 Reflexen mit $F_0 \ge 1\sigma(F_0)$. Die Struktur wurde mittels der Schweratommethode gelöst. Verfeinerung der Nichtwasserstoffatome mit anisotropen Temperaturfaktoren; H-Atome wurden nicht lokalisiert. Ein Teil der Atome der CF₃SO₃-Gruppe weist sehr hohe Schwingungsparameter auf. Dies deutet auf Fehlordnung in diesem Bereich der Struktur. Abschliessende R-Werte: R = 0.087 und $R_{w}(F) = 0.107$. Max. Restelektronendichte 1.45 eÅ⁻³ (in unmittelbarer Umgebung der fehlgeordneten CF₃SO₃⁻-Anionen). Benutztes Programmsystem: SHELX-System [5]; benutzte Formfaktorwerte für Neutralatome aus [7], Korrekturwerte aus [8]. Die Atomparameter sind in Tabelle 2 zusammengestellt [6].

Ergebnisse und Diskussion

Während bei der Umsetzung von Cp_2TiCl_2 mit Ag CF_3SO_3 (in THF) praktisch sofort AgCl ausfällt, reagiert $Cp^*_2TiCl_2$ vergleichsweise langsam in DMF mit Ag CF_3SO_3 : Erst nach einigen Minuten trübt sich die Reaktionslösung durch abgeschiedenes AgCl. Werden die Ausgangsverbindungen im Molverhältnis 1/2 zur Reaktion gebracht, so entstehen entsprechend Gl. 1 und 2 nebeneinander unter Austausch eines bzw. zweier Cl⁻-Liganden gegen DMF die Komplexe A und B.

$$Cp^{\star}_{2}TiCl_{2} + AgCF_{3}SO_{3} + DMF \xrightarrow{DMF} [Cp^{\star}_{2}Ti(DMF)Cl]CF_{3}SO_{3} + AgCl$$
(1)
(A)

$$[Cp^{\star}_{2}Ti(DMF)Cl]CF_{3}SO_{3} + DMF \xrightarrow{DMF} [Cp^{\star}_{2}Ti(DMF)_{2}](CF_{3}SO_{3})_{2} + AgCl \qquad (2)$$
(B)

Während die roten Kristallnadeln von A an der Luft unbeständig sind, können die violetten Kristalle von B einige Stunden an der Luft aufbewahrt werden. Beim Kontakt mit Wasser färben sie sich gelb.

In beiden Komplexen sind an den Ti-Zentren der Cp_2^*Ti -Baugruppen zwei weitere Liganden gebunden. Dabei wird eine näherungsweise tetraedrische Koodinationsgeometrie realisiert (Details s. unten). A priori denkbar wäre auch, dass ionische Verbindungen mit Kationen entstehen, in denen die Ti-Zentren Koordinationszahlen <4 aufweisen. Entsprechende Kationen sind $[Cp_2^*Ti]^{2+}$ und $[Cp_2^*TiCl]^+$. Diese $Cp_2^*Ti^{IV}$ -Spezies sollten, verglichen mit den (nicht existenten)

Fig. 1. Ein [Cp2*Ti(DMF)Cl] '-Kation.

 Cp_2Ti^{IV} -Analoga, wegen der grossen Raumbeanspruchung der Cp*-Gruppen eine erhöhte "Daseinschance" haben. Offenbar ist aber das Bestreben des Ti-Zentrums, ein Koordinationstetraeder zu realisieren, so stark, dass auch im Falle des Cp*_2Ti^{IV}-Fragments schwach koordinierende Neutralliganden wie DMF als Liganden akzeptiert werden.

Die Figuren 1 und 2 zeigen ORTEP-Darstellungen der beiden Komplexkationen. Bindungsabstände und -winkel sind in den Tabellen 3 und 4 aufgeführt. In Tabelle 5 sind zum Vergleich die wesentlichen Strukturdaten von A und B und einigen verwandten Verbindungen zusammengestellt.

Die Cp*-Liganden sind nahezu symmetrisch an den Ti-Atomen gebunden. (Dies ergibt sich aus dem Vergleich des Winkels, den die Ringebenennormalen einschliessen, mit dem Z-Ti-Z-Winkel ($Z = C_s$ -Ringzentrum); Werte für A: 136.9 bzw. 138.7°; für **B**: 140.4 bzw. 139.7°). Ein Blick auf Fig. 1 und 2 zeigt, dass einige der Methylgruppen (im jeweils linken Teil der Abbildungen) sich relativ nahe kommen und sich dabei gegenseitig deutlich aus der zugehörigen C_s -Ringebene nach der

Fig. 2. Ein $[Cp_2 \star Ti(DMF)_2]^2$ -Kation.

TABELLE 3

2.331(2)	C(11) - C(12)	1.426(13)
1.984(6)	C(12) - C(13)	1.428(11)
	C(13) - C(14)	1.410(11)
1.278(11)	C(14) - C(15)	1.404(13)
1.303(14)	C(15)-C(11)	1.423(10)
1.495(16)		
1.491(16)	C(21)-C(22)	1.414(12)
	C(22)-C(23)	1.408(13)
2.391(10)	C(23)-C(24)	1.416(13)
2.492(9)	C(24)-C(25)	1.406(13)
2.425(9)	C(25)-C(21)	1.402(12)
2.478(7)		
2.429(9)		
2.425(7)		
2.400(6)		
2.469(7)		
2.438(9)		
2.399(9)		
2.109(9)		
2.111(7)		
1.630(24)		
1.305(18)		
1.301(11)		
1.751(18)		
92.2(2)	Ti-O(11)-C(111)	167.0(5)
138.7(3)	O(11)-C(111)-N(11)	120.9(9)
	C(111)-N(11)-C(112)	117.5(10)
	C(111)-N(11)-C(113)	123.2(10)
	C(112)-N(11)-C(113)	119.3(11)
	1.984(6) $1.278(11)$ $1.303(14)$ $1.495(16)$ $1.491(16)$ $2.391(10)$ $2.492(9)$ $2.425(9)$ $2.425(9)$ $2.425(7)$ $2.400(6)$ $2.469(7)$ $2.438(9)$ $2.399(9)$ $2.109(9)$ $2.111(7)$ $1.630(24)$ $1.305(18)$ $1.301(11)$ $1.751(18)$ $92.2(2)$ $138.7(3)$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

BINDUNGSABSTÄNDE (Å) UND -WINKEL (°) VON [Cp*2Ti(DMF)Cl]CF3SO3 (A)

^a Z(1), Z(2) sind die Schwerpunkte der C(11) bzw. C(21) enthaltenden Cp*-Ringe.

Ti-Atom-abgewandten Ringseite "wegdrücken". Die relevanten engen Kontakte sind für A: $C(12') \cdots C(21')$, 3.36; $C(12') \cdots C(22')$, 3.43 und $C(13') \cdots C(21')$. 3.49 Å und für **B**: $C(13') \cdots C(24')$, 3.25; $C(14') \cdots C(24')$, 3.79; $C(14') \cdots C(25')$, 3.27 Å (zum Vergleich: Van der Waals-Abstand zwischen Methylgruppen: 4.0 Å [15]). Die Abstände der betroffenen Methyl-C-Atome von der zugehörigen besten Ringebene betragen 0.44, 0.16, 0.45 und 0.16 Å für C(12'), C(13'), C(21') bzw. C(22') in A und 0.27, 0.33, 0.36 und 0.29 Å für C(13'), C(14'), C(24') bzw. C(25') in B. Die Abstossung zwischen den Methylgruppen führt auch dazu, dass der Z-Ti-Z-Winkel in A und B (sowie anderen Cp_2^*Ti -Komplexen) deutlich grösser als in Cp₂Ti-Komplexen ist (die entsprechenden Werte liegen bei 138 bzw. 132°; vergl. Tabelle 5). Die realisierte Geometrie stellt somit einen Kompromiss gegenläufiger Tendenzen dar: Einerseits sind die Cp*-Gruppen bestrebt, als symmetrisch gebundene h^5 -Liganden zu fungieren, wobei das entsprechende, offenbar relativ enge Energieminimum bei einem Z-Ti-Z-Winkel von etwa 130° liegt. Andererseits sind die Methylgruppen bestrebt, nur wenig aus der zugehörigen C5-Ringebene herauszuragen und gleichzeitig engen Kontakten mit benachbarten Methylgruppen auszuweichen.

TABELLE 4

WICHTIGE BINDUNGSABSTÄNDE (Å) UND -WINKEL (°) VON $[Cp^*_2Ti(DMF)_2](CF_3SO_3)_2$ (B) "

Ti-O(11)	1.994(4)	C(11)–C(12)	1.409(8)
Ti-O(22)	2.007(4)	C(12)-C(13)	1.406(8)
		C(13)-C(14)	1.416(8)
O(11)-C(111)	1.257(7)	C(14) - C(15)	1.431(10)
C(111)~N(11)	1.289(8)	C(15) - C(11)	1.417(8)
N(11)-C(112)	1.467(8)		
N(11)-C(113)	1.473(8)	C(21)-C(22)	1.419(8)
O(22)-C(221)	1.274(7)	C(22)-C(23)	1.431(9)
C(221)-N(22)	1.297(7)	C(23)-C(24)	1.416(9)
N(22)-C(222)	1.454(9)	C(24)-C(25)	1.421(9)
		C(25)-C(21)	1.411(8)
Ti-C(11)	2.394(6)		
Ti-C(12)	2.441(5)	S(2)-O(4)	1.379(7)
Ti-C(13)	2.420(6)	S(2)-O(5)	1.400(6)
Ti-C(14)	2.413(6)	S(2)-O(6)	1.421(8)
Ti-C(15)	2.396(7)	S(2)-C(2)	1.795(10)
		C(2)~F(4)	1.304(12)
Ti-C(21)	2.438(5)	C(2) - F(5)	1.381(11)
Ti-C(22)	2.404(6)	C(2)- F(6)	1.258(11)
Ti-C(23)	2.402(6)		
Ti-C(24)	2.419(7)		
Ti-C(25)	2.433(5)		
Ti-Z(1)	2.091(6)		
Ti-Z(2)	2.096(6)		
S(1)-O(1)	1.432(6)		
S(1)-O(2)	1.435(5)		
S(1) O(3)	1.441(6)		
S(1)~C(1)	1.818(6)		
C(1)-F(1)	1.333(7)		
C(1)-F(2)	1.320(7)		
C(1)-F(3)	1.332(8)		
O(11)-Ti-O(22)	89.8(2)	Z(1) - Ti - Z(2)	139.7(2)
Ti-O(11)-C(111)	158.2(4)	Ti-O(22)-C(221)	148.1(4)
O(11)-C(111)-N(11)	122.9(5)	O(22)-C(221)-N(22)	122.1(5)
C(111)-N(11)-C(112)	122.7(5)	C(221)-N(22)-C(222)	123.8(5)
C(112)-N(11)-C(113)	121.7(5)	C(221)-N(22)-C(223)	119.7(5)
C(112)-N(11)-C(113)	115.6(5)	C(222)-N(22)-C(223)	116.4(5)

" Z(1), Z(2) sind die Zentren der C(11) bzw. C(21) enthaltenden Cp*-Ringe.

Die in **A** und **B** vorkommenden DMF-Liganden gleichen sich bezüglich ihrer Bindungsabstände und -winkel in engen Grenzen: Die C-, N- und O-Atome sind jeweils nahezu koplanar (Abweichungen von der Ebene, die durch die drei C-Atome der DMF-Gruppe verläuft, bei A: N(11), 0.02; O(11), -0.05 Å; bei **B**: N(11), 0.00; O(11), 0.07; N(22), -0.02; O(22), 0.01 Å). Die Figuren 1 und 2 zeigen, dass die Atome aller drei DMF-Gruppen annähernd in der Ebene liegen, welche den Winkel zwischen den Cp*-Ringebenen halbiert. Die Ti-O-C(DMF)-Bindungswinkel streuen über einen relativ grossen Bereich: von 148° (an O(22) in **B**) bis 167° (an O(11) in **A**). In den anderen strukturell untersuchten Metallkomplexen mit DMF-Liganden ist dieser Winkel kleiner. In einer Zusammenstellung entsprechender Verbindungen

TABELLE 5

	Ti-Z Mittel- wert	Ti-O	Ti-Cl	Z-Ti-Z	X-Ti-Y	Lite- ratur
Cp [*] ₂ TiCl ₂	2.13	_	2.35	137.4	92.4	9
$[Cp^{*}_{2}Ti(DMF)Cl]CF_{3}SO_{3}(A)$	2.11	1.98	2.35	138.7	92.2	diese Arbeit
$[Cp^{\star}_{2}Ti(DMF)_{2}](CF_{3}SO_{3})_{2} (\mathbf{B})$	2.09	1.99 2.01	-	139.7	89.9	diese Arbeit
$[Cp^{\star}_{2}Ti(H_{2}O)_{2}](CF_{3}SO_{3})_{2}$	2.09	2.06 2.09		138.6	85.7	10
Cp ₂ TiCl ₂	2.06	-	2.36	131.0	94.5	11
[Cp ₂ Ti(NCCH ₃)Cl]FeCl ₄	2.03	-	2.38	133.2	91.7	12
$[Cp_2Ti(H_2O)_2](ClO_4)_2 \cdot 3THF$	2.03	1.99 2.03	-	133.3	90.4	13
$[Cp_2Ti(H_2O)_2](NO_3)_2$	2.03	2.01	-	133.6	92.7	14

KOORDINATIONSGEOMETRIE DES TI-ATOMS IN A UND B UND VERWANDTEN KOMPLEXEN "

^a Z bedeutet Zentrum eines C₅-Ringes.

[16] werden Winkel von 120 bis 135° aufgeführt. Der grosse Winkelbereich deutet darauf hin, dass das entsprechende Potentialminimum flach ist und dass der realisierte Winkel durch die Packung der Komplexe im Kristall stark mitbeeinflusst wird.

Die in Tabelle 5 aufgeführten Werte zeigen, dass der Ti-Z-Abstand für $Cp_2^{\star}Ti$ -Komplexe um ca. 0.06 Å grösser als für einen entsprechenden (neutralen bzw. ionischen) Cp_2Ti -Komplex ist und dass er, wenn auch geringfügig, mit zunehmendem Ersatz von Cl⁻ durch einen Neutralligand, abnimmt. Bezüglich ihrer X-Ti-Y-Winkel (X, Y = DMF oder Cl) fallen A und B in den üblichen Rahmen (Vergl. Tabelle 5).

Die hohen Temperaturparameter und die teilweise unrealistischen Atomabstände für das Trifluormethansulfonatanion in A deuten auf eine Fehlordnung dieser Gruppe hin. Auch in **B** besitzen die Atome der einen $CF_3SO_3^{-}$ -Gruppe relativ hohe Schwingungsparameter.

Dank

Wir danken dem Fonds der Chemischen Industrie für die Unterstützung der vorliegenden Untersuchung.

Literatur

- 1 U. Thewalt und H.-P. Klein, Z. Kristallogr., 153 (1980) 307.
- 2 U. Thewalt und K. Berhalter, J. Organomet. Chem., 302 (1986) 193.
- 3 R.B. King, Coord. Chem. Rev., 20 (1976) 155.
- 4 MULTAN-84, P. Main, G. Germain, und M.M. Woolfson.
- 5 SHELX-76 Programmsystem; G.M. Sheldrick, Göttingen, unveröffentlicht.
- 6 Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Energie-Physik-Mathematik GmbH, D-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD-51973, der Autoren und des Zeitschriftenzitates angefordert werden.

- 7 D.T. Cromer und J.B. Mann, Acta Cryst., A, 24 (1968) 321.
- 8 D.T. Cromer und D. Liberman, J. Chem. Phys., 53 (1970) 1891.
- 9 T.C. McKenzie, R.D. Sanner und J.E. Bercaw, J. Organomet. Chem., 102 (1975) 457.
- 10 U. Thewalt und B. Honold, unveröffentlicht.
- 11 A. Clearfield, D.K. Warner, C.H. Saldarriaga-Molina, R. Ropal und I. Bernal, Canad. J. Chem., 53 (1975) 1622.
- 12 U. Thewalt, K. Berhalter, und E.W. Neuse, Trans. Met. Chem., 10 (1985) 393.
- 13 U. Thewalt und H.-P. Klein, J. Organomet. Chem., 194 (1980) 297.
- 14 H.-P. Klein und U. Thewalt, Z. Anorg. Allg. Chem., 476 (1981) 62.
- 15 L. Pauling, Die Natur der Chemischen Bindung, Verlag Chemie, Weinheim, 1968, S. 249.
- 16 F. Calderazzo, G. Pampaloni, D. Vitali, G. Pelizzi, I. Collamati, S. Frediani und A.M. Serra, J. Organomet. Chem., 191 (1980) 217